Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen.

Identifieur interne : 000702 ( Main/Exploration ); précédent : 000701; suivant : 000703

Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen.

Auteurs : Niveditha Umesh Katyayini [Norvège] ; Pï Ivi L H. Rinne [Norvège] ; Christiaan Van Der Schoot [Norvège]

Source :

RBID : pubmed:31504881

Descripteurs français

English descriptors

Abstract

The biosynthesis and roles of strigolactones (SLs) have been investigated in herbaceous plants, but so far, their role in trees has received little attention. In this study, we analyzed the presence, spatial/temporal expression and role of SL pathway genes in Populus tremula � Populus tremuloides. In this proleptic species, axillary buds (AXBs) become para-dormant at the bud maturation point, providing an unambiguous starting point to study AXB activation. We identified previously undescribed Populus homologs of DWARF27 (D27), LATERAL BRANCHING OXIDOREDUCTASE (LBO) and DWARF53-like (D53-like) and analyzed the relative expression of all SL pathway genes in root tips and shoot tissues. We found that, although AXBs expressed MORE AXILLARY GROWTH1 (MAX1) and LBO, they did not express MAX3 and MAX4, whereas nodal bark expressed high levels of all SL biosynthesis genes. By contrast, expression of the SL perception and signaling genes MAX2, D14 and D53 was high in AXBs relative to nodal bark and roots. This suggests that AXBs are reliant on the associated nodes for the import of SLs and SL precursors. Activation of AXBs was initiated by decapitation and single-node isolation. This rapidly downregulated SL pathway genes downstream of MAX4, although later these genes were upregulated coincidently with primordia formation. GR24-feeding counteracted all activation-related changes in SL gene expression but did not prevent AXB outgrowth showing that SL is ineffective once AXBs are activated. The results indicate that nodes rather than roots supply SLs and its precursors to AXBs, and that SLs may restrain embryonic shoot elongation during AXB formation and para-dormancy in intact plants.

DOI: 10.1093/pcp/pcz170
PubMed: 31504881
PubMed Central: PMC6896703


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen.</title>
<author>
<name sortKey="Katyayini, Niveditha Umesh" sort="Katyayini, Niveditha Umesh" uniqKey="Katyayini N" first="Niveditha Umesh" last="Katyayini">Niveditha Umesh Katyayini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432</wicri:regionArea>
<wicri:noRegion>�s N-1432</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rinne, Pi Ivi L H" sort="Rinne, Pi Ivi L H" uniqKey="Rinne P" first="Pï Ivi L H" last="Rinne">Pï Ivi L H. Rinne</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432</wicri:regionArea>
<wicri:noRegion>�s N-1432</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Der Schoot, Christiaan" sort="Van Der Schoot, Christiaan" uniqKey="Van Der Schoot C" first="Christiaan" last="Van Der Schoot">Christiaan Van Der Schoot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432</wicri:regionArea>
<wicri:noRegion>�s N-1432</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31504881</idno>
<idno type="pmid">31504881</idno>
<idno type="doi">10.1093/pcp/pcz170</idno>
<idno type="pmc">PMC6896703</idno>
<idno type="wicri:Area/Main/Corpus">000717</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000717</idno>
<idno type="wicri:Area/Main/Curation">000717</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000717</idno>
<idno type="wicri:Area/Main/Exploration">000717</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen.</title>
<author>
<name sortKey="Katyayini, Niveditha Umesh" sort="Katyayini, Niveditha Umesh" uniqKey="Katyayini N" first="Niveditha Umesh" last="Katyayini">Niveditha Umesh Katyayini</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432</wicri:regionArea>
<wicri:noRegion>�s N-1432</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rinne, Pi Ivi L H" sort="Rinne, Pi Ivi L H" uniqKey="Rinne P" first="Pï Ivi L H" last="Rinne">Pï Ivi L H. Rinne</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432</wicri:regionArea>
<wicri:noRegion>�s N-1432</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Der Schoot, Christiaan" sort="Van Der Schoot, Christiaan" uniqKey="Van Der Schoot C" first="Christiaan" last="Van Der Schoot">Christiaan Van Der Schoot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432, Norway.</nlm:affiliation>
<country xml:lang="fr">Norvège</country>
<wicri:regionArea>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432</wicri:regionArea>
<wicri:noRegion>�s N-1432</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant & cell physiology</title>
<idno type="eISSN">1471-9053</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Lactones (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Shoots (genetics)</term>
<term>Plant Shoots (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Signal Transduction (genetics)</term>
<term>Signal Transduction (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Lactones (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Pousses de plante (génétique)</term>
<term>Pousses de plante (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Transduction du signal (génétique)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Lactones</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Shoots</term>
<term>Populus</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Pousses de plante</term>
<term>Protéines végétales</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Shoots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Lactones</term>
<term>Populus</term>
<term>Pousses de plante</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The biosynthesis and roles of strigolactones (SLs) have been investigated in herbaceous plants, but so far, their role in trees has received little attention. In this study, we analyzed the presence, spatial/temporal expression and role of SL pathway genes in Populus tremula � Populus tremuloides. In this proleptic species, axillary buds (AXBs) become para-dormant at the bud maturation point, providing an unambiguous starting point to study AXB activation. We identified previously undescribed Populus homologs of DWARF27 (D27), LATERAL BRANCHING OXIDOREDUCTASE (LBO) and DWARF53-like (D53-like) and analyzed the relative expression of all SL pathway genes in root tips and shoot tissues. We found that, although AXBs expressed MORE AXILLARY GROWTH1 (MAX1) and LBO, they did not express MAX3 and MAX4, whereas nodal bark expressed high levels of all SL biosynthesis genes. By contrast, expression of the SL perception and signaling genes MAX2, D14 and D53 was high in AXBs relative to nodal bark and roots. This suggests that AXBs are reliant on the associated nodes for the import of SLs and SL precursors. Activation of AXBs was initiated by decapitation and single-node isolation. This rapidly downregulated SL pathway genes downstream of MAX4, although later these genes were upregulated coincidently with primordia formation. GR24-feeding counteracted all activation-related changes in SL gene expression but did not prevent AXB outgrowth showing that SL is ineffective once AXBs are activated. The results indicate that nodes rather than roots supply SLs and its precursors to AXBs, and that SLs may restrain embryonic shoot elongation during AXB formation and para-dormancy in intact plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31504881</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1471-9053</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>60</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2019</Year>
<Month>Dec</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Plant & cell physiology</Title>
<ISOAbbreviation>Plant Cell Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>2797-2811</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/pcp/pcz170</ELocationID>
<Abstract>
<AbstractText>The biosynthesis and roles of strigolactones (SLs) have been investigated in herbaceous plants, but so far, their role in trees has received little attention. In this study, we analyzed the presence, spatial/temporal expression and role of SL pathway genes in Populus tremula � Populus tremuloides. In this proleptic species, axillary buds (AXBs) become para-dormant at the bud maturation point, providing an unambiguous starting point to study AXB activation. We identified previously undescribed Populus homologs of DWARF27 (D27), LATERAL BRANCHING OXIDOREDUCTASE (LBO) and DWARF53-like (D53-like) and analyzed the relative expression of all SL pathway genes in root tips and shoot tissues. We found that, although AXBs expressed MORE AXILLARY GROWTH1 (MAX1) and LBO, they did not express MAX3 and MAX4, whereas nodal bark expressed high levels of all SL biosynthesis genes. By contrast, expression of the SL perception and signaling genes MAX2, D14 and D53 was high in AXBs relative to nodal bark and roots. This suggests that AXBs are reliant on the associated nodes for the import of SLs and SL precursors. Activation of AXBs was initiated by decapitation and single-node isolation. This rapidly downregulated SL pathway genes downstream of MAX4, although later these genes were upregulated coincidently with primordia formation. GR24-feeding counteracted all activation-related changes in SL gene expression but did not prevent AXB outgrowth showing that SL is ineffective once AXBs are activated. The results indicate that nodes rather than roots supply SLs and its precursors to AXBs, and that SLs may restrain embryonic shoot elongation during AXB formation and para-dormancy in intact plants.</AbstractText>
<CopyrightInformation>� The Author(s) 2019. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Katyayini</LastName>
<ForeName>Niveditha Umesh</ForeName>
<Initials>NU</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rinne</LastName>
<ForeName>Pï Ivi L H</ForeName>
<Initials>PILH</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432, Norway.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>van der Schoot</LastName>
<ForeName>Christiaan</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, Norwegian University of Life Sciences, �s N-1432, Norway.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>Plant Cell Physiol</MedlineTA>
<NlmUniqueID>9430925</NlmUniqueID>
<ISSNLinking>0032-0781</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007783">Lactones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007783" MajorTopicYN="N">Lactones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018520" MajorTopicYN="N">Plant Shoots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus </Keyword>
<Keyword MajorTopicYN="N">Axillary bud</Keyword>
<Keyword MajorTopicYN="N">DWARF27 (D27)</Keyword>
<Keyword MajorTopicYN="N">DWARF53-like (D53-like)</Keyword>
<Keyword MajorTopicYN="N">LATERAL BRANCHING OXIDOREDUCTASE (LBO)</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31504881</ArticleId>
<ArticleId IdType="pii">5554459</ArticleId>
<ArticleId IdType="doi">10.1093/pcp/pcz170</ArticleId>
<ArticleId IdType="pmc">PMC6896703</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2018 Apr 23;69(9):2255-2264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29300937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Oct;7(10):1533-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25053833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Nov;27(11):3143-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(4):863-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Oct 31;8:1874</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29163599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2019 Mar;24(3):220-236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30797425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):6092-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24711430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Apr;152(4):1914-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20154098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Oct;32(2):255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12383090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Mar 16;335(6074):1348-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22422982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2016 Jul;28(7):1581-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27317673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Nov;67(21):5975-5991</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27697786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jan;21(2):215-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10743661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 11;455(7210):195-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Jun;174(2):1250-1259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28404726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Mar;37(3):742-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23992149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Nov;172(3):1844-1852</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27670819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2009 May;65(5):478-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19222046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jun 9;435(7043):824-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15944706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Aug 23;7:1260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27602041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Sep 11;5:462</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25309561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Apr 3;386(6624):485-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9087405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 May 1;17(9):1175-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Jun 15;17(12):1469-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12815068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2011 May;107(7):1203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21504914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2018 Oct 5;18(1):220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30290771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 May 31;113(22):6301-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27194725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):458-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Mar;225(4):1031-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17260144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Mar;99(3):375-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Dec 19;504(7480):406-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Mar 25;16(4):6757-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25815594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2018 Mar 1;59(3):544-553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29325120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jun;123(2):689-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10859199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Mar;45(6):1028-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Dec;145(4):1471-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17951458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jul 18;9(7):e102757</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25036388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jul;126(3):1205-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Sci. 1983 Mar-Apr;71(2):141-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Apr;158(4):1976-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22323776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 25;101(21):8039-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15146070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2018 Oct;45(Pt A):155-161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30014890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):1134-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24610723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Feb;17:86-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24507499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2014 Aug;240(2):399-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24888863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1929-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19218361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Oct;196(2):535-547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22924438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):18084-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1997 Aug;84(8):1064</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Jan;233(1):209-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21080198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 15;6:21593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26875827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Dec;22:7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25179782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2017 May 1;144(9):1661-1673</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28289131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):974-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Nov;66(21):6745-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26248666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Nov 09;8:1935</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29170677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Jul 27;14(14):1232-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15268852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Aug;168(4):1820-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26111543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Apr 23;69(9):2205-2218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29385517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2006 Apr;17(2):123-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16504498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1867-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19846541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(1):80-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17346265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Oct;76(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23773129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):130-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013;11(1):e1001474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Feb;14(1):94-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21144796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2015 Nov;25(11):1219-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26470846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pestic Sci. 2017 May 20;42(2):58-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30363140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Apr 23;69(9):2305-2318</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29294064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1990 Dec;7(1_2_3_4):157-167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Nov;212(3):613-626</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27376674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 May;21(5):1512-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19470589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Sep 11;455(7210):189-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18690209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):697-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pestic Sci. 2016 Nov 20;41(4):175-180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30363158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Aug;56(8):1655-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26076970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Apr 23;69(9):2231-2239</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29522151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Oct;21:1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24981923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 May 15;444(1):11-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22533671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):920-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Apr 23;69(9):2219-2230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29522118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Aug 25;536(7617):469-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27479325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2017 Oct;22(10):813-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28844847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Jul;4(7):e226</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16787107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Apr;12(4):211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2014 Dec;10(12):1028-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25344813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Mar;8(3):443-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15737939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Dec 19;504(7480):401-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2012 Nov 6;22(21):2032-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22959345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Oct 1;38(10):1588-1597</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30265349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2000 Feb 15;218(2):341-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10656774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2017 Apr 28;68:291-322</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28125281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 May;48(5):667-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1966 Dec 2;154(3753):1189-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17780042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2009 Nov;73(11):2460-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19897913</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Norvège</li>
</country>
</list>
<tree>
<country name="Norvège">
<noRegion>
<name sortKey="Katyayini, Niveditha Umesh" sort="Katyayini, Niveditha Umesh" uniqKey="Katyayini N" first="Niveditha Umesh" last="Katyayini">Niveditha Umesh Katyayini</name>
</noRegion>
<name sortKey="Rinne, Pi Ivi L H" sort="Rinne, Pi Ivi L H" uniqKey="Rinne P" first="Pï Ivi L H" last="Rinne">Pï Ivi L H. Rinne</name>
<name sortKey="Van Der Schoot, Christiaan" sort="Van Der Schoot, Christiaan" uniqKey="Van Der Schoot C" first="Christiaan" last="Van Der Schoot">Christiaan Van Der Schoot</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000702 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000702 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31504881
   |texte=   Strigolactone-Based Node-to-Bud Signaling May Restrain Shoot Branching in Hybrid Aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31504881" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020